برنامه نویسی

Augmix در Pytorch (15) – Community Dev

Augmix () می تواند به طور تصادفی AugMix را به عنوان تصویر زیر انجام دهد. *در مورد chain_depth بحث با severity=1با mixture_width=0 وت alpha=0.0 وت alpha بحث با severity=1با mixture_width=0 وت chain_depth=0:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AugMix
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1mw0cd0a0_data = OxfordIIITPet( # `s` is severity and `mw` is mixture_width.
    root="data",                 # `cd` is chain_depth and `a` is alpha. 
    transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=0.0)
)

s1mw0cd1a0_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=1, alpha=0.0)
)

s1mw0cd2a0_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=2, alpha=0.0)
)

s1mw0cd5a0_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=5, alpha=0.0)
)

s1mw0cd10a0_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=10, alpha=0.0)
)

s1mw0cd25a0_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=25, alpha=0.0)
)

s1mw0cd50a0_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=50, alpha=0.0)
)

s1mw0cd0a1_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=1.0)
)

s1mw0cd0a2_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=2.0)
)

s1mw0cd0a5_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=5.0)
)

s1mw0cd0a10_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=10.0)
)

s1mw0cd0a25_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=25.0)
)

s1mw0cd0a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=1, mixture_width=0, chain_depth=0, alpha=50.0)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1mw0cd0a0_data, main_title="s1mw0cd0a0_data")
show_images1(data=s1mw0cd1a0_data, main_title="s1mw0cd1a0_data")
show_images1(data=s1mw0cd2a0_data, main_title="s1mw0cd2a0_data")
show_images1(data=s1mw0cd5a0_data, main_title="s1mw0cd5a0_data")
show_images1(data=s1mw0cd10a0_data, main_title="s1mw0cd10a0_data")
show_images1(data=s1mw0cd25a0_data, main_title="s1mw0cd25a0_data")
show_images1(data=s1mw0cd50a0_data, main_title="s1mw0cd50a0_data")
print()
show_images1(data=s1mw0cd0a0_data, main_title="s1mw0cd0a0_data")
show_images1(data=s1mw0cd0a1_data, main_title="s1mw0cd0a1_data")
show_images1(data=s1mw0cd0a2_data, main_title="s1mw0cd0a2_data")
show_images1(data=s1mw0cd0a5_data, main_title="s1mw0cd0a5_data")
show_images1(data=s1mw0cd0a10_data, main_title="s1mw0cd0a10_data")
show_images1(data=s1mw0cd0a25_data, main_title="s1mw0cd0a25_data")
show_images1(data=s1mw0cd0a50_data, main_title="s1mw0cd0a50_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0,
                 ao=True, ip=InterpolationMode.BILINEAR, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            am = AugMix(severity=s, mixture_width=mw, chain_depth=cd,
                        alpha=a, all_ops=ao, interpolation=ip, fill=f)
            plt.imshow(X=am(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1mw0cd0a0_data", s=1, mw=0, cd=0,
             a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd1a0_data", s=1, mw=0, cd=1,
             a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd2a0_data", s=1, mw=0, cd=2,
             a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd5a0_data", s=1, mw=0, cd=5,
             a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd10a0_data", s=1, mw=0, cd=10,
             a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd25a0_data", s=1, mw=0, cd=25,
             a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd50a0_data", s=1, mw=0, cd=50,
             a=0.0)
print()
show_images2(data=origin_data, main_title="s1mw0cd0a0_data", s=1, mw=0, cd=0,
             a=0.0)
show_images2(data=origin_data, main_title="s1mw0cd0a1_data", s=1, mw=0, cd=0,
             a=1.0)
show_images2(data=origin_data, main_title="s1mw0cd0a2_data", s=1, mw=0, cd=0,
             a=2.0)
show_images2(data=origin_data, main_title="s1mw0cd0a5_data", s=1, mw=0, cd=0,
             a=5.0)
show_images2(data=origin_data, main_title="s1mw0cd0a10_data", s=1, mw=0, cd=0,
             a=10.0)
show_images2(data=origin_data, main_title="s1mw0cd0a25_data", s=1, mw=0, cd=0,
             a=25.0)
show_images2(data=origin_data, main_title="s1mw0cd0a50_data", s=1, mw=0, cd=0,
             a=50.0)
حالت تمام صفحه را وارد کنید

از حالت تمام صفحه خارج شوید

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا